
Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 1 © Andrew Davison 2017

Part 3: Draw & Impress Modules

Chapter 13. Drawing Basic Shapes

This chapter contains an assortment of basic shape

creation examples, including the following:

 simple shapes: line, ellipse, rectangle, text;

 shape fills: solid, gradients, hatching, bitmaps;

 an OLE shape (a math formulae);

 polygons, multiple lines, partial ellipses.

The examples come from two files, DrawPicture.java and

AnimBicycle.java. The main() function of DrawPicture.java:

public static void main (String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Draw.createDrawDoc(loader);

 if (doc == null) {

 System.out.println("Draw doc creation failed");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 Lo.delay(1000); // need delay or zoom may not work

 GUI.zoom(doc, GUI.ENTIRE_PAGE);

 XDrawPage currSlide = Draw.getSlide(doc, 0); //access first page

 drawShapes(currSlide);

 Draw.drawFormula(currSlide, "func e^{i %pi} + 1 = 0",

 23, 20, 20, 40);

 // animShapes(currSlide); // explained in Chapter 9

 XShape s = Draw.findShapeByName(currSlide, "text1");

 Draw.reportPosSize(s);

 Lo.saveDoc(doc, "picture.odg");

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

DrawPicture.java creates a new Draw document, and finishes by saving it to the file

"picture.odg":

XComponent doc = Draw.createDrawDoc(loader);

 : // add shapes to the document

 :

Lo.saveDoc(doc, "picture.odg"); // "odg" is Draw's extension

Topics: A Black Dashed

Line; A Red Ellipse;

Filled Rectangles; Text;

Shape Names; A

Transparent Circle and a

Polar Line; A Math

Formula as an OLE

Shape; Polygons;

Multiple Lines, Partial

Elipses

Example folders: "Draw

Tests" and "Utils"

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 2 © Andrew Davison 2017

Aside from saving Office formats, Lo.saveDoc() recognizes other graphical forms

based on the filename extension (e.g. a document saved to "picture.png" will create a

PNG file).

Draw.createDrawDoc() is a wrapper around Lo.createDoc() to create a Draw

document:

public static XComponent createDrawDoc(XComponentLoader loader)

{ return Lo.createDoc("sdraw", loader); }

There's also Draw.createImpressDoc():

public static XComponent createImpressDoc(XComponentLoader loader)

{ return Lo.createDoc("simpress", loader); }

1. Drawing Shapes

The drawShapes() method inside DrawPictures.java draws the six shapes shown in

Figure 1.

Figure 1. The Six Shapes Drawn by drawShapes().

Almost every Draw method call Draw.makeShape() which creates a shape instance

and sets its size and position on the page:

// in the Draw class

public static XShape makeShape(String shapeType,

 int x, int y, int width, int height)

{ XShape shape = null;

 try {

 shape = Lo.createInstanceMSF(XShape.class,

 "com.sun.star.drawing." + shapeType);

 shape.setPosition(new Point(x*100,y*100));

 shape.setSize(new Size(width*100, height*100));

 }

 catch(Exception e)

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 3 © Andrew Davison 2017

 { System.out.println("Unable to create shape: " + shapeType); }

 return shape;

} // end of makeShape()

The method assumes that the shape is defined inside the com.sun.star.drawing

package, i.e. that it's a shape which subclasses com.sun.star.drawing.Shape, like those

in Figure 6 of Chapter 11. The code converts the supplied (x, y) coordinate, width,

and height from millimeters to Office's 1/100 mm values.

The exact meaning of the position and the size of a shape is a little tricky. If its width

and height are positive, then the position is the top-left corner of the rectangle defined

by those dimensions. However, the user can supply negative dimensions, which

means that "top-left corner" may be on the right or bottom of the rectangle (see Figure

2(a)). Office handles this by storing the rectangle with a new top-left point, so all the

dimensions can be positive (see Figure 2(b)).

Figure 2. How Office Stores a Shape with a Negative Height.

This means that your code should not assume that the position and size of a shape

remain unchanged after being set with XShape.setPosition() and XShape.setSize().

makeShape() is called by Draw.addShape() which adds the generated shape to the

page. It also check if the (x, y) coordinate is located on the page. If it isn't,

warnPosition() prints a warning message.

// in the Draw class

public static XShape addShape(XDrawPage slide, String shapeType,

 int x, int y, int width, int height)

{ warnsPosition(slide, x, y);

 XShape shape = makeShape(shapeType, x, y, width, height);

 if (shape != null)

 slide.add(shape);

 return shape;

} // end of addShape()

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 4 © Andrew Davison 2017

drawShapes() in the DrawPicture.java example is shown below. It creates the six

shapes shown in Figure 1.

// in DrawPicture.java

private static void drawShapes(XDrawPage currSlide)

{

 // black dashed line; uses (x1, y1) (x2, y2)

 XShape line1 = Draw.drawLine(currSlide, 50, 50, 200, 200);

 Props.setProperty(line1, "LineColor", 0x000000); // black

 Draw.setDashedLine(line1, true);

 // Lo.delay(2000); // to reduce the speed of the change

 // Draw.setDashedLine(line1, false);

 // red ellipse; uses (x, y) width, height

 XShape circle1 = Draw.drawEllipse(currSlide, 100, 100, 75, 25);

 Props.setProperty(circle1, "FillColor", 0xFF0000);

 // rectangle with different fills; uses (x, y) width, height

 XShape rect1 = Draw.drawRectangle(currSlide, 70, 70, 25, 50);

 // Props.setProperty(rect1, "FillColor", 0x00FF00); // green

 // Draw.setGradientColor(rect1, "Gradient 4");

 // "Radial red/yellow");

 // Draw.setGradientColor(rect1, java.awt.Color.GREEN,

 java.awt.Color.RED);

 // Draw.setHatchingColor(rect1, "Red crossed 45 degrees");

 // Draw.setBitmapColor(rect1, "Roses");

 Draw.setBitmapFileColor(rect1, "crazy_blue.jpg");

 // text defined using (x, y), width, height [size]

 XShape text1 = Draw.drawText(currSlide, "Hello LibreOffice",

 120, 120, 60, 30, 24);

 Props.setProperty(text1, "Name", "text1");

 Props.showProps("TextShape's Text Properties",

 Draw.getTextProperties(text1));

 // gray transparent circle; uses (x,y), radius

 XShape circle2 = Draw.drawCircle(currSlide, 40, 150, 20);

 Props.setProperty(circle2, "FillColor",

 Lo.getColorInt(java.awt.Color.GRAY));

 Draw.setTransparency(circle2, 25);

 // thick line; uses (x,y), angle clockwise from x-axis, length

 XShape line2 = Draw.drawPolarLine(currSlide, 60, 200, 45, 100);

 Props.setProperty(line2, "LineWidth", 300); // 3mm

} // end of drawShapes()

There's a number of variations possible for each shape, represented by commented out

code. The following sections look at how the six shapes are drawn.

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 5 © Andrew Davison 2017

2. A Black Dashed Line

Draw.drawLine() calls Draw.addShape() to create a com.sun.star.drawing.LineShape

instance. In common with other shapes, a line is defined in terms of its enclosing

rectangle, represented by its top-left corner, width, and height. Draw.drawLine()

allows the programmer to define the line using its endpoints:

// in the Draw class

public static XShape drawLine(XDrawPage slide,

 int x1, int y1, int x2, int y2)

{

 // make sure size is non-zero

 if ((x1 == x2) && (y1 == y2)) {

 System.out.println("Line is a point");

 return null;

 }

 int width = x2 - x1; // may be negative

 int height = y2 - y1; // may be negative

 return addShape(slide, "LineShape", x1, y1, width, height);

} // end of drawLine()

As mentioned above, Office will store a shape with a modified position and size if one

or both of its dimensions is negative. As an example, consider if Draw.drawLine() is

called with the coordinates (10,20) and (20,10). The call to addShape() would be

passed a positive width (10mm) and a negative height (-10mm). This would be drawn

as in Figure 3(a) but would be stored using the shape position and size in Figure 3(c).

Figure 3. How a Line with a Negative Height is Stored as a Shape.

This kind of transformation may be important if your code modifies a shape after it

has been added to the slide, as my animation examples do in the next chapter.

Back in DrawPicture.java's drawShapes(), the line's properties are adjusted. The

hardest part of this is finding the property's name in the API documentation, because

properties are typically defined across multiple services, including LineShape, Shape,

FillProperties, ShadowProperties, LineProperties, and RotationDescriptor. If the

property is related to the shape's text then you should check TextProperties,

CharacterProperties, and ParagraphProperties as well. Figure 7 of Chapter 11 shows

the situation for RectangleShape, and its much the same for other shapes. You should

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 6 © Andrew Davison 2017

start looking in the documentation for the shape (i.e. use lodoc LineShape

drawing), and move up the hierarchy.

You can click on the inheritance diagram at the top of the page (e.g. like the one in

Figure 4) to look in the different services.

Figure 4. The LineShape Inheritance Diagram in the

LibreOffice Online Documentation.

drawShapes() will color the line black and make it dashed, which suggests that I

should examine the LineProperties class. Its relevant properties are "LineColor" for

color and "LineStyle" and "LineDash" for creating dashes, as in Figure 5.

Figure 5. Relevant Properties in the LineProperties Class.

Line color can be set with a single call to Props.setProperty(), but line dashing is a

little more complicated, so is handled by Draw.setDashedLine():

// in drawShapes() in DrawPicture.java

Props.setProperty(line1, "LineColor", 0x000000); // black

Draw.setDashedLine(line1, true);

The color parameter for "LineColor" is an RGB hexadecimal. There are other ways of

defining color, which I'll explain in a moment.

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 7 © Andrew Davison 2017

Draw.setDashedLine() has to assign a LineStyle object to "LineStyle" and a LineDash

object to "LineDash". The line style is easily set since LineStyle is an enumeration

with three possible values. A LineDash object requires more work:

// in the Draw class

public static void setDashedLine(XShape shape, boolean isDashed)

{

 // create a LineDash object

 LineDash ld = new LineDash();

 ld.Dots = 0; ld.DotLen = 100; // dashes only; no dots

 ld.Dashes = 5;

 ld.DashLen = 200;

 ld.Distance = 200;

 // set the properties for the line

 XPropertySet props = Lo.qi(XPropertySet.class, shape);

 try {

 if (isDashed) { // draw a dashed line

 props.setPropertyValue("LineStyle", LineStyle.DASH);

 props.setPropertyValue("LineDash", ld);

 }

 else // draw a solid line

 props.setPropertyValue("LineStyle", LineStyle.SOLID);

 }

 catch(Exception e)

 { System.out.println("Could not set dashed line property"); }

} // end of setDashedLine()

setDashedLine() can be used to toggle a line's dashes on or off.

3. A Red Ellipse

A red ellipse is drawn using:

// in drawShapes() in DrawPicture.java

XShape circle1 = Draw.drawEllipse(currSlide, 100, 100, 75, 25);

Props.setProperty(circle1, "FillColor", 0xFF0000);

Draw.drawEllipse() is similar to drawLine() except that an EllipseShape is created by

Draw.addShape():

// in the Draw class

public static XShape drawEllipse(XDrawPage slide,

 int x, int y, int width, int height)

{ return addShape(slide, "EllipseShape", x, y, width, height); }

I want to fill the circle with a solid color, which suggests the setting of a property in

FillProperties. A visit to the online documentation for EllipseShape reveals an

inheritance diagram like the one in Figure 6.

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 8 © Andrew Davison 2017

Figure 6. The EllipseShape Inheritance Diagram in the

LibreOffice Online Documentation.

Clicking on the FillProperties rectangle jumps to its documentation, which lists a

"FillColor" property (see Figure 7).

Figure 7. Relevant Properties in the FillProperties Class.

Both the "FillColor" and "FillStyle" properties should be set, but the default value for

"FillStyle" is already FillStyle.SOLID, which is what's needed.

4. A Rectangle with a Variety of Fills

The rectangle example in drawShapes() comes in six different colors:

 // in drawShapes() in DrawPicture.java

 // rectangle with different fills

 XShape rect1 = Draw.drawRectangle(currSlide, 70, 70, 25, 50);

 // Props.setProperty(rect1, "FillColor", 0x00FF00); // green

 // Draw.setGradientColor(rect1, "Gradient 4");

 // "Radial red/yellow");

 // Draw.setGradientColor(rect1, java.awt.Color.GREEN,

 java.awt.Color.RED);

 // Draw.setHatchingColor(rect1, "Red crossed 45 degrees");

 // Draw.setBitmapColor(rect1, "Roses");

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 9 © Andrew Davison 2017

 Draw.setBitmapFileColor(rect1, "crazy_blue.jpg");

They're shown in Figure 8.

Figure 8. Six Ways of Filling a Rectangle.

4.1. Gradient Color

The second example in Figure 8 ("gradient color") is implemented using

Draw.setGradientColor():

// in the Draw class

public static void setGradientColor(XShape shape, String name)

{

 XPropertySet props = Lo.qi(XPropertySet.class, shape);

 try {

 props.setPropertyValue("FillStyle", FillStyle.GRADIENT);

 props.setPropertyValue("FillGradientName", name);

 }

 catch(com.sun.star.lang.IllegalArgumentException e)

 { System.out.println("\"" + name + "\" is not a

 recognized gradient color name"); }

 catch(Exception e)

 { System.out.println("Could not set to \"" + name + "\""); }

} // end of setGradientColor()

The hardest part of using this function is determining what name value to pass to the

"FillGradientName" property (e.g. "Gradient 4" in the call in drawShapes()). The

easiest solution is to fire up Office's Draw application, and check out the gradient

names listed in the "Line and Filling" toolbar. Figure 9 shows what happens when the

user selects a shape and chooses the "Gradient" menu item from the combo box.

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 10 © Andrew Davison 2017

Figure 9. The Gradient Names in LibreOffice.

If you supply a name which is not in Figure 9's list, then "Linear blue/white" is used

instead.

4.2. Gradient AWT Color

The third example in Figure 8 shows what happens when you define your own

gradient and angle of change. In drawShapes(), the call is:

Draw.setGradientColor(rect1, java.awt.Color.GREEN,

 java.awt.Color.RED);

This creates a gradient change from green to red downwards through the shape.

Draw.setGradientColor() calls a four argument version of itself which specifies the

gradient angle:

// in the Draw class

public static void setGradientColor(XShape shape,

 java.awt.Color startColor, java.awt.Color endColor)

{ setGradientColor(shape, startColor, endColor, 0); }

public static void setGradientColor(XShape shape,

 java.awt.Color startColor, java.awt.Color endColor, int angle)

/* if angle == 90 then the gradient changes from the left

 to the right side of the shape */

{

 // create Gradient object

 Gradient grad = new Gradient();

 grad.Style = GradientStyle.LINEAR;

 grad.StartColor = Lo.getColorInt(startColor);

 grad.EndColor = Lo.getColorInt(endColor);

 grad.Angle = (short)(angle*10); // in 1/10 degree units

 grad.Border = 0;

 grad.XOffset = 0; grad.YOffset = 0;

 grad.StartIntensity = 100; grad.EndIntensity = 100;

 grad.StepCount = 10;

 XPropertySet props = Lo.qi(XPropertySet.class, shape);

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 11 © Andrew Davison 2017

 try {

 props.setPropertyValue("FillStyle", FillStyle.GRADIENT);

 props.setPropertyValue("FillGradient", grad);

 }

 catch(Exception e)

 { System.out.println("Could not set gradient colors"); }

} // end of setGradientColor()

setGradientColor() sets the properties "FillStyle" and "FillGradient". The latter

requires a Gradient object, which is documented in the FillProperties class, as shown

in Figure 10.

Figure 10. The "FillGradient" Property in the FillProperties Class.

The online documentation for FillProperties can be reached using lodoc

FillProperties service reference.

Clicking on the "com::sun::star::awt::Gradient" name in Figure 10 loads its

documentation, which lists ten fields that need to be set.

The colors passed to Draw.setGradientColor() are the Java AWT constants for red and

green (java.awt.Color.RED and java.awt.Color.GREEN), but any Color objects could

be used. They're converted to hexadecimals by Lo.getColorInt():

public static int getColorInt(java.awt.Color color)

// return the color as an integer, ignoring the alpha channel

{

 if (color == null) {

 System.out.println("No color supplied");

 return 0;

 }

 else

 return (color.getRGB() & 0xffffff);

} // end of getColorInt()

4.3. Hatching

The fourth fill in Figure 8 employs hatching. In drawShapes(), the call is:

Draw.setHatchingColor(rect1, "Red crossed 45 degrees");

Draw.setHatchingColor() is:

public static void setHatchingColor(XShape shape, String name)

{

 XPropertySet props = Lo.qi(XPropertySet.class, shape);

 try {

 props.setPropertyValue("FillStyle", FillStyle.HATCH);

 props.setPropertyValue("FillHatchName", name);

 }

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 12 © Andrew Davison 2017

 catch(com.sun.star.lang.IllegalArgumentException e)

 { System.out.println("\"" + name + "\" not a hatching name"); }

 catch(Exception e)

 { System.out.println("Could not set color \"" + name + "\""); }

} // end of setHatchingColor()

This function is much the same as setGradientColor() except that it utilizes

"FillHatchName" rather than "FillGradientName", and the fill style is set to

FillStyle.HATCH. Suitable hatching names can be found by looking at the relevant

list in Draw's "Line and Filling" toolbar. Figure 11 shows the "Hatching" menu item.

Figure 11. The Hatching Names in LibreOffice.

4.4. Bitmap Color

The fifth rectangle fill in Figure 8 utilizes a bitmap color:

Draw.setBitmapColor(rect1, "Roses");

The function is:

public static void setBitmapColor(XShape shape, String name)

{

 XPropertySet props = Lo.qi(XPropertySet.class, shape);

 try {

 props.setPropertyValue("FillStyle", FillStyle.BITMAP);

 props.setPropertyValue("FillBitmapName", name);

 }

 catch(com.sun.star.lang.IllegalArgumentException e)

 { System.out.println("\"" + name + "\" is not a bitmap"); }

 catch(Exception e)

 { System.out.println("Could not set to \"" + name + "\""); }

} // end of setBitmapColor()

This is also similar to setGradientColor() and setHatchingColor() but uses a different

"FillStyle" value, and assigns a name to "FillBitmapName". As you might have

guessed by now, the best source for these names is the "Line and Filling" toolbar

shown in Figure 12.

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 13 © Andrew Davison 2017

Figure 12. The Bitmap Names in LibreOffice.

4.5. Bitmap File Color

The final fill in Figure 8 loads a bitmap from "crazy_blue.jpg":

Draw.setBitmapFileColor(rect1, "crazy_blue.jpg");

setBitmapFileColor() is:

public static void setBitmapFileColor(XShape shape, String fnm)

{

 XPropertySet props = Lo.qi(XPropertySet.class, shape);

 try {

 props.setPropertyValue("FillStyle", FillStyle.BITMAP);

 props.setPropertyValue("FillBitmapURL", FileIO.fnmToURL(fnm));

 }

 catch(Exception e)

 { System.out.println("Could not set color \"" + fnm + "\""); }

} // end of setBitmapFileColor()

The "FillBitmapURL" property requires a URL, so the filename is converted by

FileIO.fnmToURL().

5. Text

The "Hello LibreOffice" text shape in Figure 1 is created by calling Draw.drawText():

XShape text1 = Draw.drawText(currSlide, "Hello LibreOffice",

 120, 120, 60, 30, 24);

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 14 © Andrew Davison 2017

The first four numerical parameters define the shape's bounding rectangle in terms of

its top-left coordinate, width, and height. The fifth, optional number specifies a font

size (in this case, 24pt).

drawText() calls addShape() with "TextShape":

// in the Draw class

public static XShape drawText(XDrawPage slide, String msg,

 int x, int y, int width, int height, int fontSize)

{ XShape shape = addShape(slide, "TextShape", x,y, width, height);

 addText(shape, msg, fontSize);

 return shape;

} // end of drawText()

addText() adds the message to the shape, and sets its font size:

public static void addText(XShape shape, String msg, int fontSize)

{

 XText xText = Lo.qi(XText.class, shape);

 XTextCursor cursor = xText.createTextCursor();

 cursor.gotoEnd(false);

 if (fontSize > 0)

 Props.setProperty(cursor, "CharHeight", fontSize);

 XTextRange range = Lo.qi(XTextRange.class, cursor);

 range.setString(msg);

} // end of addText()

The shape is converted into an XText reference, and the text range selected with a

cursor.

The "CharHeight" property comes from the CharacterProperties service, which is

inherited by the Text service (as shown in Figure 7 of Chapter 11).

Some Help with Text Properties

The text-related properties for a shape can be accessed with

Draw.getTextProperties():

public static XPropertySet getTextProperties(XShape xShape)

{

 XText xText = Lo.qi(XText.class, xShape);

 XTextCursor cursor = xText.createTextCursor();

 cursor.gotoStart(false);

 cursor.gotoEnd(true);

 XTextRange xTextRange = Lo.qi(XTextRange.class, cursor);

 return Lo.qi(XPropertySet.class, xTextRange);

} // end of getTextProperties()

drawShapes() in DrawPicture.java calls Draw.getTextProperties() on the text1

TextShape, and prints all its properties:

// in drawShapes() in DrawPicture.java

Props.showProps("TextShape's Text Properties",

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 15 © Andrew Davison 2017

 Draw.getTextProperties(text1));

The output is long, but includes the line:

CharHeight == 24.0

which indicates that the font size was correctly changed by the earlier call to

Draw.drawText().

6. Using a Shape Name

Immediately after the call to Draw.drawText(), the shape's name is set:

// in drawShapes() in DrawPicture.java

Props.setProperty(text1, "Name", "text1");

The "Name" property, which is defined in the Shape class, is a useful way of referring

to a shape. The main() function of DrawPicture.java passes a name to

Draw.findShapeByName():

// in main() in DrawPicture.java

XShape s = Draw.findShapeByName(currSlide, "text1");

Draw.reportPosSize(s);

Draw.findShapeByName() iterates through a list of shapes extracted from the slide,

and returns the shape with the supplied name:

// in the Draw class

public static XShape findShapeByName(XDrawPage slide,

 String shapeName)

{ ArrayList<XShape> shapes = getShapes(slide);

 if (shapes == null) {

 System.out.println("No shapes were found in the draw page");

 return null;

 }

 for (XShape shape : shapes) {

 String nm = (String)Props.getProperty(shape, "Name");

 if (shapeName.equals(nm))

 return shape;

 }

 System.out.println("No shape named \"" + shapeName + "\"");

 return null;

} // end of findShapeByName()

Draw.getShapes() builds a list of shapes by iterating through the XDrawPage object

as an indexed container of shapes:

// in the Draw class

public static ArrayList<XShape> getShapes(XDrawPage slide)

{

 if (slide == null) {

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 16 © Andrew Davison 2017

 System.out.println("Slide is null");

 return null;

 }

 if (slide.getCount() == 0) {

 System.out.println("Slide does not contain any shapes");

 return null;

 }

 ArrayList<XShape> xShapesList = new ArrayList<XShape>();

 try {

 for(int j=0; j < slide.getCount(); j++)

 xShapesList.add(Lo.qi(XShape.class, slide.getByIndex(j)));

 }

 catch(Exception e)

 { System.out.println("Shapes extraction error in slide"); }

 return xShapesList;

} // end of getShapes()

Draw.reportPosSize() prints some brief information about a shape, including its name,

shape type, position, and size:

// in the Draw class

public static void reportPosSize(XShape shape)

{

 if (shape == null) {

 System.out.println("The shape is null");

 return;

 }

 System.out.println("Shape name: " +

 Props.getProperty(shape, "Name"));

 System.out.println(" Type: " + shape.getShapeType());

 Point pt = shape.getPosition();

 Size sz = shape.getSize();

 System.out.println(" Position/size: (" +

 pt.X/100 + ", " + pt.Y/100 + ") / (" +

 sz.Width/100 + ", " + sz.Height/100 + ")");

} // end of reportPosSize()

XShape.getShapeType() returns the class name of the shape as a string (in this case,

"com.sun.star.drawing.TextShape").

7. A Transparent Circle and a Polar Line

The last two shapes created by DrawPicture.java's drawShapes() are a gray

transparent circle and a polar line.

// in drawShapes() in DrawPicture.java

// gray transparent circle; uses (x,y), radius

XShape circle2 = Draw.drawCircle(currSlide, 40, 150, 20);

Props.setProperty(circle2, "FillColor",

 Lo.getColorInt(java.awt.Color.GRAY));

Draw.setTransparency(circle2, 25);

// thick line; uses (x,y), angle clockwise from x-axis, length

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 17 © Andrew Davison 2017

XShape line2 = Draw.drawPolarLine(currSlide, 60, 200, 45, 100);

Props.setProperty(line2, "LineWidth", 300); // 3mm

A polar line is one defined using polar coordinates, which specifies the coordinate of

one end of the line, and the angle and length of the line from that point.

Draw.drawCircle() uses an EllipseShape, and Draw.drawPolarLine() converts the

polar values into two coordinates so Draw.drawLine() can be called.

8. A Math formula as an OLE Shape

Draw/Impress documents can include OLE objects through OLE2Shape, which

allows a shape to link to an external document. Probably the most popular kind of

OLE shape is the chart, but I'll delay a detailed discussion of that topic until Part 5,

although there is a code snippet below.

The best way of finding out what OLE objects are available is to go to Draw's (or

Impress') Insert menu  Object  "OLE Object" dialog. It lists Office spreadsheet,

chart, drawing, presentation, and formula documents, and a range of Microsoft and

PDF types (when you click on "Further objects").

The DrawPicture.java OLE example displays a mathematical formula, as in Figure 13.

Figure 13. A Math Formula in a Draw Document.

DrawPicture.java renders the formula by calling Draw.addFormula(), which hides the

tricky aspects of instatiating the OLE shape:

// in main() in DrawPicture.java

Draw.drawFormula(currSlide, "func e^{i %pi} + 1 = 0",

 23, 20, 20, 40);

The second argument is a formula string, written using Office's Math notation. For an

overview, see the "Commands Reference" appendix of the "Math Guide", available

from https://www.libreoffice.org/get-help/documentation/.

Draw.drawFormula() is coded as:

public static XShape drawFormula(XDrawPage slide, String formula,

 int x, int y, int width, int height)

{

 XShape shape = addShape(slide, "OLE2Shape", x, y, width, height);

 Props.setProperty(shape, "CLSID", Lo.MATH_CLSID); // a formula

 XModel model = Lo.qi(XModel.class,

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 18 © Andrew Davison 2017

 Props.getProperty(shape, "Model"));

 Props.setProperty(model, "Formula", formula);

 // from FormulaProperties

 return shape;

} // end of drawFormula()

OLE2Shape uses a "CLSID" property to hold the class ID of the OLE object. Setting

this property affects the shape's model (data format), which is stored in the "Model"

property. drawFormula() casts this property to XModel and, since the model

represents formula data, it has a "Formula" property where the formula string is

stored.

Creating Other Kinds of OLE Shape

The use of a "Formula" property in Draw.drawFormula() only works for an OLE

shape representing a formula. How are other kinds of data stored?

The first step is to set the OLE shape's class ID to the correct value, which will affect

its "Model" property. A short list of class ID constants are included at the start of the

Lo utility class, along with a few commented out IDs which I haven’t tested.

Creating an OLE2Shape for a chart begins like so:

XShape shape = addShape(slide, "OLE2Shape", x, y, width, height);

Props.setProperty(shape, "CLSID", Lo.CHART_CLSID); // a chart

XModel model = Lo.qi(XModel.class,

 Props.getProperty(shape, "Model"));

Online information on how to use XModel to store a chart, a graphic, or something

else, is pretty sparse. I've found the best start is to list the services that support the

XModel reference. This is done by calling Info.showServices():

Info.showServices("OLE2Shape Model", model);

For the version of model in drawFormula(), it reports:

OLE2Shape Model Supported Services (2)

 "com.sun.star.document.OfficeDocument"

 "com.sun.star.formula.FormulaProperties"

This gives a strong hint to look inside the FormulaProperties service, to find a

property for storing the formula string. A look at the documentation (lodoc

FormulaProperties service) reveals a "Formula" property, which I used in

drawFormula().

When the model refers to chart data, the same call to Info.showServices() prints:

OLE2Shape Model Supported Services (3)

 "com.sun.star.chart.ChartDocument"

 "com.sun.star.chart2.ChartDocument"

 "com.sun.star.document.OfficeDocument"

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 19 © Andrew Davison 2017

The com.sun.star.chart2 package is the newer way of manipulating charts, which

suggests that the XModel interfaces should be converted to an interface of

com.sun.star.chart2.ChartDocument. The most useful is XChartDocument, which is

obtained via:

XChartDocument chartDoc = Lo.qi(XChartDocument.class, model);

XChartDocument supports a rich set of chart manipulation methods. I'll return to

charts in Part 5.

9. Polygons

The main() function of AnimBicycle.java calls Draw.drawPolygon() twice to create

regular polygons for a square and pentagon:

// in AnimBicycle.java

XShape square = Draw.drawPolygon(currSlide, 125, 125, 25, 4);

 // (x,y), radius, no. of sides

Props.setProperty(square, "FillColor", 0x3fe694); // pale green

XShape pentagon = Draw.drawPolygon(currSlide, 150, 75, 5);

 // (x,y), no. of sides

 // radius uses a default value

Props.setProperty(pentagon, "FillColor", 0xe7b9c7); // purple

The polygons can be seen in Figure 14.

Figure 14. Bicycle and Shapes.

Draw.drawPolygon() is:

// in the Draw class

public static XShape drawPolygon(XDrawPage slide,

 int x, int y, int radius, int nSides)

{

 XShape polygon = addShape(slide, "PolyPolygonShape", 0, 0, 0, 0);

 // for shapes formed by one *or more* polygons

 Point[] pts = genPolygonPoints(x, y, radius, nSides);

 Point[][] polys = new Point[][] {pts};

 // an array of Point arrays, one Point array for each polygon

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 20 © Andrew Davison 2017

 Props.setProperty(polygon, "PolyPolygon", polys);

 return polygon;

} // end of drawPolygon()

drawPolygon() creates a "PolyPolygonShape" shape which is designed to store

multiple polygons. This is why the polys data structure instantiated at the end of

drawPolygon() is an array of points arrays, since the shape's "PolyPolygon" property

can hold multiple point arrays. However, drawPolygon() only creates a single points

array by calling genPolygonPoints().

A points array defining the four points of a square could be:

Point[] pts = new Point[4];

pts[0] = new Point(4000, 1200);

pts[1] = new Point(4000, 2000);

pts[2] = new Point(5000, 2000);

pts[3] = new Point(5000, 1200);

Note that the coordinates of each point use Office's 1/100 mm units.

genPolygonPoints() generates a points array for a regular polygon based on the

coordinate of the center of the polygon, the distance from the center to each point (the

shape's radius), and the required number of sides:

private static Point[] genPolygonPoints(int x, int y,

 int radius, int nSides)

{ if (nSides < 3) {

 System.out.println("Too few sides; must be 3 or more");

 nSides = 3;

 }

 else if (nSides > 30) {

 System.out.println("Too many sides; must be 30 or less");

 nSides = 30;

 }

 Point[] pts = new Point[nSides];

 double angleStep = Math.PI/nSides;

 for (int i = 0; i < nSides; i++) {

 pts[i] = new Point(

 (int) Math.round(x*100 +

 radius*100 * Math.cos(i*2*angleStep)),

 (int) Math.round(y*100 +

 radius*100 * Math.sin(i*2*angleStep)));

 }

 return pts;

} // end of genPolygonPoints()

10. Mult-line Shapes

A PolyLineShape can hold multiple line paths, where a path is a sequence of

connected lines. Draw.drawLines() only creates a single line path, based on being

passed arrays of x- and y- axis coordinates. For example, the following code in

AnimBicycle creates the crossed lines at the top-left of Figure 14:

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 21 © Andrew Davison 2017

// in AnimBicycle.java

int[] xs = {10, 30, 10, 30};

int[] ys = {10, 100, 100, 10};

Draw.drawLines(currSlide, xs, ys);

Draw.drawLines() is:

// in the Draw class

public static XShape drawLines(XDrawPage slide, int[] xs, int[] ys)

{

 if (xs.length != ys.length) {

 System.out.println("The two arrays must be the same length");

 return null;

 }

 int numPoints = xs.length;

 Point[] pts = new Point[numPoints];

 for (int i = 0; i < numPoints; i++)

 pts[i] = new Point(xs[i]*100, ys[i]*100); //in 1/100 mm units

 Point[][] linePaths = new Point[][] {pts};

 // an array of Point arrays, one Point array for each line path

 XShape polyLine = addShape(slide, "PolyLineShape", 0, 0, 0, 0);

 // for a shape formed from multiple line paths

 Props.setProperty(polyLine, "PolyPolygon", linePaths);

 return polyLine;

} // end of drawLines()

drawLines() creates an array of Point arrays which is stored in the PolyLineShape

property called "PolyPolygon". However, drawLines() only adds a single points array

to the linePaths data structure since only one line path is being created.

11. Partial Ellipses

EllipseShape contains a "CircleKind" property that determines whether the entire

ellipse should be drawn, or only a portion of it. The properties "CircleStartAngle" and

"CircleEndAngle" define the angles where the solid part of the ellipse starts and

finishes. Zero degrees is the positive x-axis, and the angle increase in 1/100 degrees

units counter-clockwise around the center of the ellipse.

AnimBicycle.java contains the following example:

// in AnimBicycle.java

XShape pie = Draw.drawEllipse(currSlide, 30,

 slideSize.Width-100, 40, 20);

Props.setProperty(pie, "CircleStartAngle", 9000); // 90 degrees ccw

Props.setProperty(pie, "CircleEndAngle", 36000); // 360 degrees ccw

Props.setProperty(pie, "CircleKind", CircleKind.SECTION);

Java LibreOffice Programming. Chapter 13. Basic Shapes Draft #2 (21st March 2017)

 22 © Andrew Davison 2017

 // CircleKind.CUT, CircleKind.ARC

This creates the blue partial ellipse shown at the bottom left of Figure 14.

Figure 15 shows the different results when "CircleKind" is set to

CircleKind.SECTION, CircleKind.CUT, and CircleKind.ARC.

Figure 15. Different Types of Partial Ellipse

